An improved bound on the Hausdorff dimension of Besicovitch sets in R^3
Recent Developments in Harmonic Analysis May 15, 2017 - May 19, 2017
Location: SLMath: Eisenbud Auditorium
Tags/Keywords
harmonic analysis
Hausdorff dimension
Besicovitch sets
Kakeya conjecture
Zahl
A Besicovitch set is a compact set in R^d that contains a unit line segment pointing in every direction. The Kakeya conjecture asserts that every Besicovitch set in R^d must have Hausdorff dimension d. I will discuss a recent improvement on the Kakeya conjecture in three dimensions, which says that every Kakeya set in R^3 must have Hausdorff dimension at least 5/2 + \eps, where \eps is a small positive constant. This is joint work with Nets Katz
Zahl Notes
|
Download |
Zahl
H.264 Video |
15-Zahl.mp4
|
Download |
Please report video problems to itsupport@slmath.org.
See more of our Streaming videos on our main VMath Videos page.