Home /  Workshop /  Schedules /  Stability for PDEs, the Maslov Index, and Spatial Dynamics

Stability for PDEs, the Maslov Index, and Spatial Dynamics

Hamiltonian systems, from topology to applications through analysis I October 08, 2018 - October 12, 2018

October 09, 2018 (10:30 AM PDT - 11:30 AM PDT)
Speaker(s): Margaret Beck (Boston University)
Location: SLMath: Eisenbud Auditorium
Tags/Keywords
  • stability theory

  • maslov index

Primary Mathematics Subject Classification No Primary AMS MSC
Secondary Mathematics Subject Classification No Secondary AMS MSC
Video

6-Beck

Abstract

Understanding the stability of solutions to PDEs is important, because it is typically only stable solutions which are observable. For many PDEs in one spatial dimension, stability is well-understood, largely due to a formulation of the problem in terms of so-called spatial dynamics, where one views the single spatial variable as a time-like evolution variable. This allows for many powerful techniques from the theory of dynamical systems to be applied. In higher spatial dimensions, this perspective is not clearly applicable. In this talk, I will discuss recent work that suggests both that the Maslov index could be a important tool for understanding stability when the system has a symplectic structure, particularly in the multi-dimensional setting, and also suggests a possible analogue of spatial dynamics in the multi-dimensional setting.

Supplements
Asset no preview Notes 6.18 MB application/pdf Download
Video/Audio Files

6-Beck

H.264 Video 6-Beck.mp4 86.9 MB video/mp4 Download
Troubles with video?

Please report video problems to itsupport@slmath.org.

See more of our Streaming videos on our main VMath Videos page.