Character Theory and Tempered Cohomology
Derived algebraic geometry and its applications March 25, 2019 - March 29, 2019
Location: SLMath: Eisenbud Auditorium
K-theory
homotopy theory
algebraic geometry
character theory
formal groups
11-Lurie
Complex K-theory is a generalized cohomology theory introduced by Atiyah and Hirzebruch, which associates to each finite cell complex X the Grothendieck group KU(X) of complex vector bundles on X. However, it also admits a purely algebraic description which makes no mention of vector bundles: it is the complex-oriented cohomology theory associated to the multiplicative formal group over Spec(Z). In this talk, I'll discuss a variant of this algebraic picture which can be used to recover equivariant complex K-theory (as well as equivariant elliptic cohomology), and explain its relationship with the classical character theory of finite groups and various generalizations thereof.
Notes
|
Download |
11-Lurie
H.264 Video | 873_26330_7687_11-Lurie.mp4 |
Please report video problems to itsupport@slmath.org.
See more of our Streaming videos on our main VMath Videos page.