Home /  Workshop /  Schedules /  Nonlocal-interaction equations on graphs and gradient flows in nonlocal Wasserstein metric

Nonlocal-interaction equations on graphs and gradient flows in nonlocal Wasserstein metric

[Moved Online] Hot Topics: Optimal transport and applications to machine learning and statistics May 04, 2020 - May 08, 2020

May 08, 2020 (03:30 PM PDT - 04:30 PM PDT)
Speaker(s): Dejan Slepcev (Carnegie Mellon University)
Location: SLMath: Online/Virtual
Tags/Keywords
  • nonlocal interaction gradient descent

  • discrete to continuum limit

  • graph Wasserstein

Primary Mathematics Subject Classification
Secondary Mathematics Subject Classification
Video

Nonlocal-Interaction Equations On Graphs And Gradient Flows In Nonlocal Wasserstein Metric

Abstract

We consider transport equations on graphs, where mass is distributed over vertices and is transported along the edges. The first part of the talk will deal with the graph analogue of the Wasserstein distance, in the particular case where the notion of density along edges is inspired by the upwind numerical schemes. While this approach has both theoretical and computational advantages, the resulting distance is only a quasi-metric. We investigate this quasi-metric both on graphs and on more general structures where the set of ``vertices'' is an arbitrary positive measure. In the second part of the talk we will interpret the nonlocal-interaction equation equations on graphs as gradient flows with respect to the graph-Wasserstain quasi-metric of the nonlocal-interaction energy. We show that for graphs representing data sampled from a manifold, the solutions of the nonlocal-interaction equations on graphs converge to solutions of an integral equation on the manifold.

Supplements No Notes/Supplements Uploaded
Video/Audio Files

Nonlocal-Interaction Equations On Graphs And Gradient Flows In Nonlocal Wasserstein Metric

H.264 Video 928_28414_8337_Nonlocal-Interaction_Equations_on_Graphs_and_Gradient_Flows_in_Nonlocal_Wasserstein_Metric.mp4
Troubles with video?

Please report video problems to itsupport@slmath.org.

See more of our Streaming videos on our main VMath Videos page.