Unbounded growth of the energy density associated to the Schrödinger map and the binormal flow
[Moved Online] Recent Developments in Fluid Dynamics April 12, 2021 - April 30, 2021
Location: SLMath: Online/Virtual
vortex filaments
binormal flow
nonlinear Schrödinger equations
singular data
critical solutions
Fourier modes growth
Unbounded Growth of the Energy Density Associated to the Schrödinger Map and the Binormal Flow
In this talk I shall consider the binormal flow equation, which is a model for the dynamics of vortex filaments in Euler equations. Geometrically it is a flow of curves in three dimensions, explicitly connected to the 1-D Schrödinger map with values on the 2-D sphere, and to the 1-D cubic Schrödinger equation. Although these equations are completely integrable we show the existence of an unbounded growth of the energy density. The density is given by the amplitude of the high frequencies of the derivative of the tangent vectors of the curves, thus giving information of the oscillation at small scales. In the setting of vortex filaments the variation of the tangent vectors is related to the one of the direction of the vorticity, that according to the Constantin-Fefferman-Majda criterion plays a relevant role in the possible development of singularities for Euler equations. This is a joint work with Luis Vega.
Unbounded Growth of the Energy Density Associated to the Schrödinger Map and the Binormal Flow
Please report video problems to itsupport@slmath.org.
See more of our Streaming videos on our main VMath Videos page.