Summer Graduate School
Parent Program: | -- |
---|---|
Location: | SLMath: Eisenbud Auditorium, Atrium |
Show List of Lecturers
- Peter Patzt (Purdue University)
- Andrew Putman (University of Notre Dame)
- Andrew Snowden (University of Michigan)
- Jenny Wilson (University of Michigan)
Show List of Teaching Assistants
- Megan Maguire (University of California, Irvine)
- John Wiltshire-Gordon (University of Wisconsin-Madison)
Show List of Speakers
- Peter Patzt (Purdue University)
- Andrew Putman (University of Notre Dame)
- Andrew Snowden (University of Michigan)
- Jenny Wilson (University of Michigan)
- John Wiltshire-Gordon (University of Wisconsin-Madison)
This summer school will give an introduction to representation stability, the study of algebraic structural properties and stability phenomena exhibited by sequences of representations of finite or classical groups -- including sequences arising in connection to hyperplane arrangements, configuration spaces, mapping class groups, arithmetic groups, classical representation theory, Deligne categories, and twisted commutative algebras. Representation stability incorporates tools from commutative algebra, category theory, representation theory, algebraic combinatorics, algebraic geometry, and algebraic topology. This workshop will assume minimal prerequisites, and students in varied disciplines are encouraged to apply.
Suggested prerequisites:
Representations of finite groups over C and the classification of Sn-irreps
Representation Theory of Finite Groups:
- Fulton--Harris, "Representation Theory, A first course", Chapters 1-3
- Serre, "Linear representations of finite groups", Parts I and II
Representations of S_n:
- Fulton--Harris, "Representation Theory, A first course", Chapter 4
- James, "The representation theory of symmetric groups"
Commutative algebra (Noetherian rings, tensor product, free resolutions)
Tensor products:
- Dummit--Foote, "Abstract Algebra", Chapter 10.4
- Atiyah--MacDonald, "Introduction to Commutative Algebra", Chapter 2
Noetherian rings:
- Dummit--Foote, "Abstract Algebra", Chapter 15.1
- Atiyah--MacDonald, "Introduction to Commutative Algebra", Chapter 6-7
Gröbner bases
- Dummit--Foote, "Abstract Algebra", Chapter 9.5-9.6
- Cox--Little--O'Shea, "Ideals, Varieties, and Algorithms", Chapters 2.1-2.6
- Eisenbud, "Commutative algebra" Chapter 15
Representation theory of GLnC
- Henderson, "Representations of Lie Algebras", whole book
- Fulton--Harris, "Representation Theory, A first course", Chapter 15
Homological algebra (Tor, Ext, derived functors)
- Dummit--Foote, "Abstract Algebra", Chapter 10.5, 17.1
- Rotman, "An Introduction to Homological Algebra", Chapter 6.1-6.2 & 7.1-7.2
- Weibel, "An introduction to homological algebra", Chapters 2, 3
Topology (homology and cohomology of spaces and/or groups)
Spaces:
- Hatcher, "Algebraic Topology", Chapters 2-3
Groups:
- Brown, "Cohomology of Groups", Chapters I-III
- Dummit--Foote, "Abstract Algebra", Chapter 17.2
- Weibel, "An introduction to homological algebra", Chapters 6, 7
Symmetric functions
- MacDonald, "Symmetric Functions and Hall Polynomials", Chapter I
- Stanley, "Enumerative Combinatorics, Vol 2", Chapter 7
Category theory
- Mac Lane, "Categories for the Working Mathematician", Chapter
I.1-I.5, II.1-II.4, & IV.1-IV.4.
Backgroud articles:
- Church--Ellenberg--Farb, "FI-modules and stability for
representations of symmetric groups"
- Sam--Snowden, "Introduction to twisted commutative algebras"
- Draisma, "Noetherian up to symmetry"
For eligibility and how to apply, see the Summer Graduate Schools homepage
Representation stability
Representation theory
homological stability
functor categories
Gröbner methods
Noetherian
group cohomology
Schur-Weyl duality
twisted commutative algebra
FI-module
VI-module
VIC-module
pure braid groups
hyperplane arrangements
mapping class groups
Moduli space
Torelli groups
configuration spaces
congruence subgroups
Deligne categories
13D02 - Syzygies, resolutions, complexes and commutative rings
16P40 - Noetherian rings and modules (associative rings and algebras)
55R80 - Discriminantal varieties and configuration spaces in algebraic topology
05E10 - Combinatorial aspects of representation theory [See also 20C30]
13P10 - Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
14M15 - Grassmannians, Schubert varieties, flag manifolds [See also 32M10, 51M35]
14M17 - Homogeneous spaces and generalizations [See also 32M10, 53C30, 57T15]
Show Directions to Venue
Show Visa/Immigration
Show Reimbursement Guidelines
Jun 24, 2019 Monday |
|
|||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jun 25, 2019 Tuesday |
|
|||||||||||||||||||||||||||||||||
Jun 26, 2019 Wednesday |
|
|||||||||||||||||||||||||||||||||
Jun 27, 2019 Thursday |
|
|||||||||||||||||||||||||||||||||
Jun 28, 2019 Friday |
|
|||||||||||||||||||||||||||||||||
Jul 01, 2019 Monday |
|
|||||||||||||||||||||||||||||||||
Jul 02, 2019 Tuesday |
|
|||||||||||||||||||||||||||||||||
Jul 03, 2019 Wednesday |
|
|||||||||||||||||||||||||||||||||
Jul 05, 2019 Friday |
|