Positively and non-negatively curved manifolds and (torus) symmetries
Introductory Workshop: Modern Riemannian Geometry January 18, 2016 - January 22, 2016
Location: SLMath: Eisenbud Auditorium
Tags/Keywords
differential geometry
Riemannian geometry
modern geometry
curvature
curvature estimates
Ricci curvature
Ricci curvature lower bounds
constant curvature complex manifolds
non-negative sectional curvature
positive sectional curvature
torus actions
14426
The classification of Riemannian manifolds with positive or non-negative sectional curvature is a long-standing problem in Riemannian Geometry. This talk will give a survey of tools and techniques, results and open problems concerning this class of manifolds with an emphasis on how (torus) symmetries play an important role in obtaining classification results
Searle Notes
|
Download |
14426
H.264 Video |
14426.mp4
|
Download |
Please report video problems to itsupport@slmath.org.
See more of our Streaming videos on our main VMath Videos page.