Manifolds with lower sectional curvature bounds and Alexandrov geometry
Introductory Workshop: Modern Riemannian Geometry January 18, 2016  January 22, 2016
Location: SLMath: Eisenbud Auditorium
differential geometry
Riemannian geometry
modern geometry
curvature
curvature estimates
Ricci curvature
Ricci curvature lower bounds
sectional curvature
critical points
GromovHausdorff metric
Hausdorff dimension
14421
The aim of the talk is to provide a survey of the main tools, results and open problems concerning manifolds with a lower (sectional) curvature bound. It is well known that local bounds on sectional curvature can be described geometrically via local distance comparison to constant curvature spaces. For lower curvature bounds this comparison is global, as expressed in the Toponogov Comparison Theorem. This together with critical point theory for distance functions paved the way for studying manifolds with only a lower sectional curvature bound, resulting in Finiteness, Structure, and Recognition Theorems. There are several equivalent versions of Toponogov’s Comparison Theorem, some of which make sense in a general metric space. Moreover, such a metrically expressed lower curvature bound is preserved by the process of taking a GromovHausdor limit. An Alexandrov space is a finite Hausdor dimensional, inner metric space with a lower curvature bound. It turns out that, despite their general definition, Alexandrov spaces have a surprisingly rich structure and are natural objects in their own rite. Their applications and significance to Riemanian geometry stems from the fact that there are several natural geometric operations that are closed in Alexandrov geometry, but not in Riemanian geometry. These include taking GromovHausdor limits, taking quotients and taking joins of positively curved spaces. All concepts alluded to above will be explained and discussed, as will examples, some of the main results, and fundamental open problems.
Grove Abstract

Download  
Grove

Download 
14421
H.264 Video 
14421.mp4

Download 
Please report video problems to itsupport@slmath.org.
See more of our Streaming videos on our main VMath Videos page.