Home /  Workshop /  Schedules /  Deligne—Lusztig induction and almost characters

Deligne—Lusztig induction and almost characters

Representations of Finite and Algebraic Groups April 09, 2018 - April 13, 2018

April 12, 2018 (11:00 AM PDT - 12:00 PM PDT)
Speaker(s): Jay Taylor (University of Manchester)
Location: SLMath: Eisenbud Auditorium
Tags/Keywords
  • finite reductive groups

  • Deligne--Lusztig induction

  • Mackey formula

Primary Mathematics Subject Classification
Secondary Mathematics Subject Classification
Video

12-Taylor

Abstract

One of the few tools one has when studying the characters of a finite group $G$ is given by induction $\mathrm{Ind}_H^G$ from a subgroup $H \leqslant G$. If $G$ is a finite reductive group and $L \leqslant G$ is a Levi subgroup then, in 1976, Deligne and Lusztig have defined a geometric analogue of this construction, which is typically referred to as Deligne—Lusztig induction $R_L^G$. A fundamental problem is to understand the decomposition of $R_L^G(\chi)$ into its irreducible constituents for any irreducible character $\chi$ of $L$. If $L$ is a torus then this problem was completely settled by Lusztig in the mid to late 80s. Using Shintani descent Asai solved this problem when $\chi$ is a unipotent character of $L$. Assuming $G$ comes from an algebraic group with connected centre then Shoji obtained generalisations of Asai’s results for arbitrary characters. In this talk we describe a new approach to this problem which relies on the validity of the Mackey formula

Supplements
31110?type=thumb Notes 193 KB application/pdf Download
Video/Audio Files

12-Taylor

H.264 Video 12-Taylor.mp4 450 MB video/mp4 Download
Troubles with video?

Please report video problems to itsupport@slmath.org.

See more of our Streaming videos on our main VMath Videos page.