Home /  Workshop /  Schedules /  Lower bound theorems for manifolds and balanced manifolds

Lower bound theorems for manifolds and balanced manifolds

Connections for Women Workshop: Geometric and Topological Combinatorics August 31, 2017 - September 01, 2017

September 01, 2017 (09:30 AM PDT - 10:30 AM PDT)
Speaker(s): Isabella Novik (University of Washington)
Location: SLMath: Eisenbud Auditorium
Tags/Keywords
  • face numbers

  • Simplicial Complexes

  • Manifolds

Primary Mathematics Subject Classification
Secondary Mathematics Subject Classification No Secondary AMS MSC
Video

5-Novik

Abstract

In this talk we will concentrate on finite simplicial complexes (that is, points, line segments, triangles, and higher-dimensional simplices nicely glued together) that triangulate manifolds. A $(d-1)$-dimensional complex is called balanced if its graph is $d$-colorable in the usual graph-theoretic sense. After reviewing what is known about the face numbers of triangulated manifolds without the balancedness assumption, we will discuss several very recent balanced analogs of these results. One of them is a lower bound on the number of edges of a balanced triangulation of a manifold $M$ in terms of the number of vertices and the 1st homology of $M$. The most recent results are joint work with Martina Juhnke-Kubitzke, Satoshi Murai, and Connor Sawaske.

Supplements
29420?type=thumb Novik Notes 1.05 MB application/pdf Download
Video/Audio Files

5-Novik

H.264 Video 5-Novik.mp4 391 MB video/mp4 rtsp://videos.msri.org/data/000/029/313/original/5-Novik.mp4 Download
Troubles with video?

Please report video problems to itsupport@slmath.org.

See more of our Streaming videos on our main VMath Videos page.