-
Seminar FD2 Reunion Seminar: Hele-Shaw Solutions Beyond Graph Domains
Show Schedules
-
Seminar FD2 Reunion Seminar: Finite-Time Blowup for an Euler and Hypodissipative Navier--Stokes Model Equation on a Restricted Constraint Space
Show Schedules
-
Seminar FD2 Reunion Seminar: Improved Low Regularity Theory for Gravity-Capillary Waves
Show Schedules
-
Seminar FD2 Reunion Seminar: Global Stability of the Kaluza-Klein Theories
Show Schedules
-
Seminar FD2 Reunion Seminar: Instantaneous Gap Loss of Sobolev Regularity for the 2D Incompressible Euler Equations
Show Schedules
-
Seminar FD2 Reunion Seminar: Stability of Periodic Waves for NLS-Type Equations
Show Schedules
-
Seminar FD2 Reunion Seminar: Water Waves Linearized at Monotonic Shear Flows
Show Schedules
-
Seminar FD2 Reunion Seminar: Low Regularity Well-Posedness for the Surface Quasi-Geostrophic Front Equation
Show Schedules
-
Seminar Regularity and Continuation for the Boltzmann Equation
Show Schedules
-
Seminar New Results on Global Bifurcation of Traveling Periodic Water Waves
Show Schedules
-
Summer Graduate School Foundations and Frontiers of Probabilistic Proofs (Zürich, Switzerland)
Show Schedules
- Lecture 01: Intro to IPs
- Lecture 02: Sumcheck Protocol
- Lecture 03: IP for PSPACE
- Lecture 04: Doubly-Efficient IPs
- Lecture 05: Zero-Knowledge IPs
- Lecture 06: Intro to PCPs
- Lecture 07: Linearity Testing
- Lecture 08: Exponential-Size PCP
- Lecture 09: Low-Degree Testing
- Lecture 10: Polynomial-Size PCP
- Lecture 11: PCPs with Sublinear Verification
- Lecture 12: Intro to IOPs
- Lecture 13: Linear-Size IOP for Circuits
- Lecture 14: FRI Protocol
- Lecture 15: Analysis of FRI
- Lecture 16: Linear-Size IOP for Machines
- Lecture 17: Holographic Proofs
- Lecture 18: Proof Composition & PCP Theorem
- Lecture 19: Limitations of IPs
- Lecture 20: Limitations of PCPs and IOPs
-
Summer Graduate School Mathematics of Big Data: Sketching and (Multi-) Linear Algebra (IBM Almaden)
Show Schedules
-
Summer Graduate School Concentration Inequalities and Localization Techniques in High Dimensional Probability and Geometry (SLMath)
Show Schedules
- Max Fathi: Lecture
- Dan Mikulincer: Lecture
- Dan Mikulincer: Lecture
- Max Fathi: Lecture
- Max Fathi: Lecture
- Dan Mikulincer: Lecture
- Dan Mikulincer: Lecture
- Max Fathi: Lecture
- Max Fathi: Lecture
- Dan Mikulincer: Lecture
- Dan Mikulincer: Lecture
- Max Fathi: Lecture
- Max Fathi: Lecture
- Dan Mikulincer: Lecture
- Max Fathi: Lecture
- Max Fathi: Lecture
- Dan Mikulincer: Lecture
- Dan Mikulincer: Lecture
-
Summer Graduate School Machine Learning (UC San Diego)
Show Schedules
- Ery Arias-Castro, Yusu Wang: Geometrical and Topological Data Analysis
- Mikhail Belkin, Lily Weng: Theoretical and Methodological Aspects of Deep Learning
- Ery Arias-Castro, Yusu Wang: Geometrical and Topological Data Analysis
- Mikhail Belkin, Lily Weng: Theoretical and Methodological Aspects of Deep Learning
- Ery Arias-Castro, Yusu Wang: Geometrical and Topological Data Analysis
- Ery Arias-Castro, Yusu Wang: Geometrical and Topological Data Analysis
- Ery Arias-Castro, Yusu Wang: Geometrical and Topological Data Analysis
- Ery Arias-Castro, Yusu Wang: Geometrical and Topological Data Analysis
- Ery Arias-Castro, Yusu Wang: Geometrical and Topological Data Analysis
- Ery Arias-Castro, Yusu Wang: Geometrical and Topological Data Analysis
- Ery Arias-Castro, Yusu Wang: Geometrical and Topological Data Analysis
-
Summer Graduate School Introduction to Derived Algebraic Geometry (UC Berkeley)
Show Schedules
- Dmytro Arinkin: DG Categories and DG Functors
- Benjamin Antieau: Functor of Points
- Benjamin Antieau: Infinity-categories
- Dmytro Arinkin: Derived Category of Modules
- Dmytro Arinkin: Modules over a DG Category
- Benjamin Antieau: Commutative Differential Graded Algebras
- Benjamin Antieau: Animated Commutative Rings
- Dmytro Arinkin: The Yoneda Embedding and (Quasi)-Functors
- Dmytro Arinkin: Pre-Triangulated and Ind-Completion
- Benjamin Antieau: Presentable infinity-categories and Derived Commutative Rings
- Benjamin Antieau: Derived Stacks
- Dmytro Arinkin: 'Large' vs `Small' Worlds: Compactly Generated Categories
- Dmytro Arinkin: DG Categories of Quasicoherent Sheaves
- Benjamin Antieau: Geometric Derived Stacks
- Benjamin Antieau: The Cotangent Complex
- Dmytro Arinkin: Operations on DG Categories
- Benjamin Antieau: Moduli of Objects
- Dmytro Arinkin: Fourier-Mukai Transforms via DG Categories
-
Summer Graduate School Topics in Geometric Flows and Minimal Surfaces (St. Mary's College)
Show Schedules
- Lu Wang: Singularity Analysis for the Mean Curvature Flow
- Lan-Hsuan Huang: Minimal Surface Methods in General Relativity
- Lu Wang: Singularity Analysis for the Mean Curvature Flow
- Lan-Hsuan Huang: Minimal Surface Methods in General Relativity
- Lu Wang: Singularity Analysis for the Mean Curvature Flow
- Lan-Hsuan Huang: Minimal Surface Methods in General Relativity
- Lu Wang: Singularity Analysis for the Mean Curvature Flow
- Lan-Hsuan Huang: Minimal Surface Methods in General Relativity
- Lu Wang: Singularity Analysis for the Mean Curvature Flow
- Lan-Hsuan Huang: Minimal Surface Methods in General Relativity
-
Summer Graduate School Mathematics and Computer Science of Market and Mechanism Design (SLMath)
Show Schedules
- Inbal Talgam-Cohen: Lecture A
- Inbal Talgam-Cohen: Lecture A
- Inbal Talgam-Cohen: Lecture A
- Inbal Talgam-Cohen: Lecture A
- Yannai Gonczarowski: Lecture B
- Yannai Gonczarowski: Lecture B
- Yannai Gonczarowski: Lecture B
- Yannai Gonczarowski: Lecture B
- Ran Shorrer: Lecture C
- Ran Shorrer: Lecture C
- Ran Shorrer: Lecture C
- Ran Shorrer: Lecture C
- Irene Lo: Lecture D
- Irene Lo: Lecture D
- Irene Lo: Lecture D
- Irene Lo: Lecture D
-
Summer Graduate School Algebraic Methods for Biochemical Reaction Networks (Leipzig, Germany)
Show Schedules
- Alicia Dickenstein: Reaction Networks: Definition, ODE, Mass-Action Kinetics
- Elisenda Feliu: Main Properties and Questions: S-Classes and Invariance, Boundedness, Steady States, Parametrizations, Multistationarity, Stability, Oscillations
- Timo de Wolff: Polynomials in Several Variables: Algebra, Geometry, Effective Computations
- Alicia Dickenstein: Invariants and Elimination of Variables, Sparseness
- Alicia Dickenstein: Binomial Ideals and Monomial Parametrizations
- Elisenda Feliu: Laplacian Matrices, Linear Elimination and Rational Parametrizations
- Elisenda Feliu: Injective Networks
- Alicia Dickenstein: Surjectivity and Multistationarity for Networks with Monomial Parametrizations. Basics on Gale Duality and Oriented Matroids
- Alicia Dickenstein: Linear Networks. Complex Balanced Steady States.
- Elisenda Feliu: Parameter Regions for Multistationarity: Adhoc Approaches and Automated Approaches
- Alicia Dickenstein: MESSI Systems
- Timo de Wolff: Nonnegative Polynomials and Polyhedral Geometry
- Elisenda Feliu: Multistationarity via Brouwer Degree
- Alicia Dickenstein: Parameter Regions for Multistationarity: Polytope Approach
- Elisenda Feliu: Bistability and Oscillations 1: Basic Definitions. Algebraic Criteria
-
MSRI-UP MSRI-UP 2023: Topological Data Analysis
Show Schedules
- Kimberly Herrera, Martin Martinez, Austin MBaye: Using Persistent Cup Products for Dissonance Detection
- Mathieu Chabaud, Sean Hadley, Solís McClain: Circular Coordinates for Non-Uniform Distributions: Introducing Weights to Nonlinear Topological Dimensionality Reduction
- Michael Eddy, Alpha Recio Valerio, Juan Rosete: Topological Decoupling of Quasiperiodic Videos
- Quincy Alston, Elise Alvarez-Salazar, Kiyanna Porter: Manifold Modeling of Pentagon Spaces Using Laplacian Eigenfunctions
- Jillian Cervantes, Manny Lopez, Katherine Lovelace: Optimizing Gravitational Wave Detection Using Topological Data Analysis
- Daniel Gonzalez, Tania Gonzalez, Alberto Magana: Data Sets Resulting in Relatively Compact Sets of Persistence Diagrams
-
Summer Graduate School Formalization of Mathematics (SLMath)
Show Schedules
- Patrick Massot: Introduction to Formalized Mathematics
- Heather Macbeth: Basics (Chapter 2 of MIL)
- Jeremy Avigad: More Basics (Chapter 2 of MIL)
- Jeremy Avigad: Logic (Chapter 3 of MIL)
- Jeremy Avigad, Patrick Massot: Sets and Functions (Chapter 4 of MIL)
- Heather Macbeth: Number Theory (Chapter 5 of MIL)
- Jeremy Avigad: Logical Foundations
- Thomas Browning: Algebraic Structures (Chapter 6 of MIL)
- Kyle Miller: Forgetful Inheritance, Hom-Like and Set-Like
- Patrick Massot: Topology (Chapter 8 of MIL)
- Patrick Massot: Hierarchies (Chapter 7 of MIL)
- Patrick Massot: Hierarchies (Chapter 7 of MIL) Continued, and Differential Calculus (Chapter 9 of MIL)
- Kyle Miller: From Lean to Informal Mathematics
- Kyle Miller: Finiteness and Graph Theory
- Thomas Browning: Formalizing Galois Theory
- Thomas Browning: Polynomials and Algebraic Number Theory
- Jeremy Avigad: The Lean Simplifier and Other Automation
- Jeremy Avigad: Formalizing Blockchain Computations
- Heather Macbeth: Integration and Complex Analysis
- Patrick Massot: Formalizing Sphere Eversion