Current Seminars
-
PSDS & EC Joint Seminar: Residual entropy of ice and Eulerian orientations of graphs and random graphs with given degrees
Location: SLMath: Eisenbud Auditorium, Online/Virtual Speakers: Rui ZhangBy investigating Pauling's mean-field approximation, we study the Eulerian orientations of certain sparse and dense random graphs with given degrees. This corresponds to the residual entropy of ice-type models on those graphs in statistical physics. For a wide range of regular graphs, we observe a negative correlation between the residual entropy and spanning tree entropy. This is based on joint works with Mikhail Isaev and Brendan McKay.
Updated on Mar 05, 2025 08:23 AM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:02 AM PST
Upcoming Seminars
-
EC Seminar: The second Kahn-Kalai conjecture up to log factors
Location: SLMath: Eisenbud Auditorium, Online/Virtual Speakers: Quentin Dubroff (Carnegie Mellon University)I’ll describe some recent progress on the "Second" Kahn-Kalai Conjecture (KKC2), the original conjecture on graph containment in G = G_{n,p} that motivated what is now the Park-Pham Theorem (PPT). KKC2 says that p_c(H), the threshold for containing a graph H in G, satisfies p_c(H) < O(p_E(H) log n), where p_E(H) is the smallest p such that the expected number of copies of any subgraph of H is at least one. In other words, for this class of problems, the expectation threshold q_f in PPT can be replaced by the smaller p_E. We show that q_f < O(p_E log^2(n)) (implying p_c(H) < O(p_E(H) log^3(n)) via PPT). This last statement will be formulated as a completely deterministic graph theory problem about maximizing subgraph counts under sparsity constraints. Joint with Jeff Kahn and Jinyoung Park.
Updated on Mar 07, 2025 08:12 AM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
UC Berkeley Combinatorics Seminar: Optimizing on the Fly
Location: UC Berkeley, Evans 891 Speakers: Peter Winkler (Dartmouth College)How should you make decisions in an uncertain world, in which you can change your mind later? Suppose there are several tokens taking random walks, and you one of them to reach a target state ASAP. You can choose any token to take a move, and if you don't like where it goes, switch to another one. Amazingly, there's an efficiently-calculable strategy for optimal play. Joint work with Ioana Dumitriu and Prasad Tetali, based on great stuff from John Gittins and Richard Weber.
Updated on Mar 05, 2025 09:38 AM PST -
PSDS Seminar: Information-theoretic approaches to simple binary hypothesis testing
Location: SLMath: Eisenbud Auditorium, Online/Virtual Speakers: Varun Jog (University of California, Berkeley)Simple binary hypothesis testing is a fundamental problem in statistics. In this talk, we discuss some recent progress in understanding its sample complexity. We also discuss distributed variants of this problem and highlight how information theoretic ideas, such as "reverse data-processing inequalities" or "one-shot lower bound that tensorise" contribute to their analyses.
Updated on Mar 05, 2025 09:39 AM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:01 AM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
UC Berkeley Combinatorics Seminar
Location: UC Berkeley, Evans 891Updated on Feb 13, 2025 09:39 AM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
PSDS & EC Joint Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:34 PM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:02 AM PST -
EC Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:30 PM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
Graduate Student Seminar Series
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:39 PM PST -
UC Berkeley Combinatorics Seminar
Location: UC Berkeley, Evans 891Updated on Feb 13, 2025 09:39 AM PST -
PSDS Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:52 PM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:01 AM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
PSDS & EC Joint Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:34 PM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:02 AM PST -
EC Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:30 PM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
Graduate Student Seminar Series
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:39 PM PST -
Professional Development Series
Location: SLMath: Baker Board RoomUpdated on Feb 18, 2025 09:36 AM PST -
UC Berkeley Combinatorics Seminar
Location: UC Berkeley, Evans 891Updated on Feb 13, 2025 09:39 AM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
PSDS & EC Joint Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:34 PM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:02 AM PST -
EC Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:30 PM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
Graduate Student Seminar Series
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:39 PM PST -
UC Berkeley Combinatorics Seminar
Location: UC Berkeley, Evans 891Updated on Feb 13, 2025 09:39 AM PST -
PSDS Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:52 PM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:01 AM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
PSDS & EC Joint Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:34 PM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:02 AM PST -
EC Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:30 PM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
Graduate Student Seminar Series
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:39 PM PST -
Professional Development Series
Location: SLMath: Baker Board RoomUpdated on Feb 18, 2025 09:36 AM PST -
UC Berkeley Combinatorics Seminar
Location: UC Berkeley, Evans 891Updated on Feb 13, 2025 09:39 AM PST -
PSDS Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:52 PM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:01 AM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
UC Berkeley Combinatorics Seminar
Location: UC Berkeley, Evans 891Updated on Feb 13, 2025 09:39 AM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
PSDS & EC Joint Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:34 PM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
Graduate Student Seminar Series
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:39 PM PST -
Professional Development Series
Location: SLMath: Baker Board RoomUpdated on Feb 18, 2025 09:36 AM PST -
UC Berkeley Combinatorics Seminar
Location: UC Berkeley, Evans 891Updated on Feb 13, 2025 09:39 AM PST -
PSDS Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:52 PM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:01 AM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
PSDS & EC Joint Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:34 PM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:02 AM PST -
EC Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:30 PM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
PSDS Open Problem Session
Location: SLMath: Baker Board RoomUpdated on Feb 28, 2025 08:01 AM PST -
Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Location: UC Berkeley, Dwinelle 183 Speakers: Daniel Kral (Masaryk University; Universität Leipzig)The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".
The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.
Updated on Jan 17, 2025 02:01 PM PST -
PSDS & EC Joint Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:34 PM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:02 AM PST -
EC Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:30 PM PST -
Graduate Student Seminar Series
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:39 PM PST -
Professional Development Series
Location: SLMath: Baker Board RoomUpdated on Feb 18, 2025 09:36 AM PST -
PSDS Seminar
Location: SLMath: Eisenbud Auditorium, Online/VirtualUpdated on Feb 06, 2025 01:53 PM PST -
PSDS Open Problem Session
Location: SLMath: Eisenbud AuditoriumUpdated on Feb 28, 2025 08:01 AM PST
-
ADJOINT 2025
ADJOINT is a yearlong program that provides opportunities for U.S. mathematicians to conduct collaborative research on topics at the forefront of mathematical and statistical research. Participants will spend two weeks taking part in an intensive collaborative summer session at SLMath. The two-week summer session for ADJOINT 2025 will take place June 30 - July 11, 2025 in Berkeley, California. Researchers can participate in either of the following ways: (1) joining ADJOINT small groups under the guidance of some of the nation's foremost mathematicians and statisticians to expand their research portfolio into new areas, or (2) applying to Self-ADJOINT as part of an existing or newly-formed independent research group ((three-to-five participants is preferred) to work on a new or established research project. Throughout the following academic year, the program provides conference and travel support to increase opportunities for collaboration, maximize researcher visibility, and engender a sense of community among participants.
Updated on Jan 28, 2025 03:42 PM PST
Past Seminars
-
Seminar PSDS Open Problem Session
Updated on Mar 03, 2025 10:36 AM PST -
Seminar Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Updated on Jan 17, 2025 02:01 PM PST -
Seminar EC Seminar: Unavoidable subgraphs in Ramsey graphs
Updated on Mar 04, 2025 10:52 AM PST -
Seminar PSDS Open Problem Session
Updated on Feb 28, 2025 08:01 AM PST -
Seminar PSDS Seminar: Probabilistic methods for stable sets in hypergraphs
Updated on Feb 26, 2025 09:20 AM PST -
Seminar Probability Graduate Student Seminar: Maximally-Stable Local Optima in Random Graphs and Spin Glasses: Phase Transitions and Universality
Updated on Feb 28, 2025 09:21 AM PST -
Seminar Neyman Seminar with Gabor Lugosi:
Updated on Feb 26, 2025 09:01 AM PST -
Seminar UC Berkeley Combinatorics Seminar: Ehrhart polynomials of generalized permutohedra from A to B
Updated on Feb 26, 2025 09:04 AM PST -
Seminar Professional Development Series: Academic Job Applications from A to Z, Session II
Updated on Feb 28, 2025 12:44 PM PST -
Seminar Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Updated on Jan 17, 2025 02:01 PM PST -
Seminar PSDS & EC Joint Seminar: The Backtracking Dynamical Cavity Method
Updated on Feb 27, 2025 11:37 AM PST -
Seminar Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Updated on Jan 17, 2025 02:01 PM PST -
Seminar PSDS Open Problem Session
Updated on Feb 20, 2025 02:45 PM PST -
Seminar PSDS Seminar: Uncovering the past: network archaeology in growing random networks
Updated on Feb 20, 2025 02:44 PM PST -
Seminar Neyman Seminar with Yeganeh Alimohammadi: Epidemic Forecasting on Networks: Bridging Local Samples with Global Outcomes
Updated on Feb 26, 2025 08:43 AM PST -
Seminar UC Berkeley Combinatorics Seminar: Bosonic bicolored solvable lattice models
Updated on Feb 20, 2025 08:40 AM PST -
Seminar UC Berkeley Probability Seminar: Programmable Matter and Emergent Computation
Updated on Feb 24, 2025 01:21 PM PST -
Seminar Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Updated on Jan 17, 2025 02:01 PM PST -
Seminar EC Seminar: Recent progress on the Bollobás-Nikiforov conjecture
Updated on Feb 20, 2025 12:34 PM PST -
Seminar Open Problem Session
Updated on Feb 20, 2025 04:02 PM PST -
Seminar PSDS & EC Joint Seminar: Clique factors in randomly augmented graphs
Updated on Feb 20, 2025 08:14 AM PST -
Seminar EC Graduate Student Seminar Series: Finding large sum-free subsets
Updated on Feb 21, 2025 03:24 PM PST -
Seminar PSDS & EC Joint Seminar: The hypergraph container lemma revisited
Updated on Feb 14, 2025 10:38 AM PST -
Seminar Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Updated on Jan 17, 2025 02:01 PM PST -
Seminar PSDS Open Problem Session
Updated on Feb 14, 2025 10:40 AM PST -
Seminar PSDS Seminar: Interplay of vertex and edge dynamics for dense random graphs
Updated on Feb 14, 2025 10:38 AM PST -
Seminar UC Berkeley Combinatorics Seminar: Extremal problems with quasirandom constraints
Updated on Feb 13, 2025 09:40 AM PST -
Seminar Professional Development Series: Academic Job Applications from A to Z
Updated on Feb 14, 2025 10:47 AM PST -
Seminar Graduate Student Seminar Series: An introduction to the flag algebra method
Updated on Feb 14, 2025 11:02 AM PST -
Seminar Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits
Updated on Jan 17, 2025 02:01 PM PST