Home 
/ /
 Programs 
/

Current Programs

  1. Kinetic Theory: Novel Statistical, Stochastic and Analytical Methods

    Organizers: Laurent Desvillettes (Université Paris Cité), Irene M. Gamba (University of Texas, Austin), François Golse (Centre de Mathématiques Laurent Schwartz, École Polytechnique), Cyril Imbert (Centre National de la Recherche Scientifique (CNRS); Université Paris Cité), LEAD Pierre-Emmanuel Jabin (Pennsylvania State University), Qin Li (University of Wisconsin-Madison), Chiara Saffirio (Universität Basel), Weiran Sun (Simon Fraser University), Lexing Ying (Stanford University)
    357 image
    Top: Neutrino interactions and neutrino-atom interactions. Bottom: Collision of two "waves"

    The focus of the proposed program is on so-called kinetic equations, describing the evolution of the of many-particle interacting systems. These models have the form of statistical flows, with their solutions being either a single or multiple point probability density functions or measures, supported in a space of attributes. The attributes are problem-dependent and can be molecular velocity, energy, opinion, wealth, and many others. The flow then predicts the evolution of the probability measure in time, position in space, and the interchanging of the particles' states by the transition probability.

    The program will strive to give an overview of the novel mathematical tools used in kinetic theory through a broad range of classical and more recent applications.

    Updated on Jul 23, 2025 01:24 PM PDT
  2. Recent Trends in Stochastic Partial Differential Equations

    Organizers: Sandra Cerrai (University of Maryland), Yu Gu (University of Maryland), Massimiliano Gubinelli (University of Oxford), Davar Khoshnevisan (University of Utah), Andrea Nahmod (University of Massachusetts, Amherst), Hao Shen (University of Wisconsin-Madison), LEAD Lorenzo Zambotti (Sorbonne Université)
    Frame1
    Solution to the geometric stochastic heat equation on the sphere at a fixed time

    The topic Singular Stochastic Partial Differential Equations (singular SPDE) has rapidly grown to be an active research area at the interface of Stochastic Analysis and PDEs on one hand, and Mathematical Physics on the other hand. During this decade we have witnessed a series of tremendous breakthroughs in the solution theories of SPDEs, universality problems, large-scale asymptotic behaviors of solutions, and foundational relations with quantum field theories and geometry. Many long-standing problems have been resolved via newly developed methods – notably the theories of regularity structures and paracontrolled distributions – and deep connections with other fields are quickly emerging.

    It is a natural time to convene a large-scale semester program.

    Updated on Jul 09, 2024 04:18 PM PDT
  3. Complementary Program 2025-26

    The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program.

    Updated on Dec 03, 2024 03:13 PM PST